6. Frequently asked questions (FAQ)

6.1. About the project

6.1.1. Where did the name Charliecloud come from?

Charlie — Charles F. McMillan was director of Los Alamos National Laboratory from June 2011 until December 2017, i.e., at the time Charliecloud was started in early 2014. He is universally referred to as “Charlie” here.

cloud — Charliecloud provides cloud-like flexibility for HPC systems.

6.1.2. How do you spell Charliecloud?

We try to be consistent with Charliecloud — one word, no camel case. That is, Charlie Cloud and CharlieCloud are both incorrect.

6.2. Errors

6.2.1. How do I read the ch-run error messages?

ch-run error messages look like this:

$ ch-run foo -- echo hello
ch-run[25750]: can't find image: foo: No such file or directory (ch-run.c:107 2)

There is a lot of information here, and it comes in this order:

  1. Name of the executable; always ch-run.
  2. Process ID in square brackets; here 25750. This is useful when debugging parallel ch-run invocations.
  3. Colon.
  4. Main error message; here can't find image: foo. This should be informative as to what went wrong, and if it’s not, please file an issue, because you may have found a usability bug. Note that in some cases you may encounter the default message error; if this happens and you’re not doing something very strange, that’s also a usability bug.
  5. Colon (but note that the main error itself can contain colons too), if and only if the next item is present.
  6. Operating system’s description of the the value of errno; here No such file or directory. Omitted if not applicable.
  7. Open parenthesis.
  8. Name of the source file where the error occurred; here ch-run.c. This and the following item tell developers exactly where ch-run became confused, which greatly improves our ability to provide help and/or debug.
  9. Source line where the error occurred.
  10. Value of errno (see C error codes in Linux for the full list of possibilities).
  11. Close parenthesis.

Note: Despite the structured format, the error messages are not guaranteed to be machine-readable.

6.2.2. Tarball build fails with “No command specified”

The full error from ch-docker2tar or ch-build2dir is:

docker: Error response from daemon: No command specified.

You will also see it with various plain Docker commands.

This happens when there is no default command specified in the Dockerfile or any of its ancestors. Some base images specify one (e.g., Debian) and others don’t (e.g., Alpine). Docker requires this even for commands that don’t seem like they should need it, such as docker create (which is what trips up Charliecloud).

The solution is to add a default command to your Dockerfile, such as CMD ["true"].

6.2.3. ch-run fails with “can’t re-mount image read-only”

Normally, ch-run re-mounts the image directory read-only within the container. This fails if the image resides on certain filesystems, such as NFS (see issue #9). There are two solutions:

  1. Unpack the image into a different filesystem, such as tmpfs or local disk. Consult your local admins for a recommendation. Note that Lustre is probably not a good idea because it can give poor performance for you and also everyone else on the system.
  2. Use the -w switch to leave the image mounted read-write. This may have an impact on reproducibility (because the application can change the image between runs) and/or stability (if there are multiple application processes and one writes a file in the image that another is reading or writing).

6.3. Unexpected behavior

6.3.1. --uid 0 lets me read files I can’t otherwise!

Some permission bits can give a surprising result with a container UID of 0. For example:

$ whoami
$ echo surprise > ~/cantreadme
$ chmod 000 ~/cantreadme
$ ls -l ~/cantreadme
---------- 1 reidpr reidpr 9 Oct  3 15:03 /home/reidpr/cantreadme
$ cat ~/cantreadme
cat: /home/reidpr/cantreadme: Permission denied
$ ch-run /var/tmp/hello cat ~/cantreadme
cat: /home/reidpr/cantreadme: Permission denied
$ ch-run --uid 0 /var/tmp/hello cat ~/cantreadme

At first glance, it seems that we’ve found an escalation – we were able to read a file inside a container that we could not read on the host! That seems bad.

However, what is really going on here is more prosaic but complicated:

  1. After unshare(CLONE_NEWUSER), ch-run gains all capabilities inside the namespace. (Outside, capabilities are unchanged.)
  2. This include CAP_DAC_OVERRIDE, which enables a process to read/write/execute a file or directory mostly regardless of its permission bits. (This is why root isn’t limited by permissions.)
  3. Within the container, exec(2) capability rules are followed. Normally, this basically means that all capabilities are dropped when ch-run replaces itself with the user command. However, if EUID is 0, which it is inside the namespace given --uid 0, then the subprocess keeps all its capabilities. (This makes sense: if root creates a new process, it stays root.)
  4. CAP_DAC_OVERRIDE within a user namespace is honored for a file or directory only if its UID and GID are both mapped. In this case, ch-run maps reidpr to container root and group reidpr to itself.
  5. Thus, files and directories owned by the host EUID and EGID (here reidpr:reidpr) are available for all access with ch-run --uid 0.

This is not an escalation. The quirk applies only to files owned by the invoking user, because ch-run is unprivileged outside the namespace, and thus he or she could simply chmod the file to read it. Access inside and outside the container remains equivalent.


6.3.2. Why does ping not work?

ping fails with “permission denied” or similar under Charliecloud, even if you’re UID 0 inside the container:

$ ch-run $IMG -- ping
PING ( 56 data bytes
ping: permission denied (are you root?)
$ ch-run --uid=0 $IMG -- ping
PING ( 56 data bytes
ping: permission denied (are you root?)

This is because ping needs a raw socket to construct the needed ICMP ECHO packets, which requires capability CAP_NET_RAW or root. Unprivileged users can normally use ping because it’s a setuid or setcap binary: it raises privilege using the filesystem bits on the executable to obtain a raw socket.

Under Charliecloud, there are multiple reasons ping can’t get a raw socket. First, images are unpacked without privilege, meaning that setuid and setcap bits are lost. But even if you do get privilege in the container (e.g., with --uid=0), this only applies in the container. Charliecloud uses the host’s network namespace, where your unprivileged host identity applies and ping still can’t get a raw socket.

The recommended alternative is to simply try the thing you want to do, without testing connectivity using ping first.

6.3.3. Why is MATLAB trying and failing to change the group of /dev/pts/0?

MATLAB and some other programs want pseudo-TTY (PTY) files to be group-owned by tty. If it’s not, Matlab will attempt to chown(2) the file, which fails inside a container.

The scenario in more detail is this. Assume you’re user charlie (UID=1000), your primary group is nerds (GID=1001), /dev/pts/0 is the PTY file in question, and its ownership is charlie:tty (1000:5), as it should be. What happens in the container by default is:

  1. MATLAB stat(2)s /dev/pts/0 and checks the GID.
  2. This GID is nogroup (65534) because tty (5) is not mapped on the host side (and cannot be, because only one’s EGID can be mapped in an unprivileged user namespace).
  3. MATLAB concludes this is bad.
  4. MATLAB executes chown("/dev/pts/0", 1000, 5).
  5. This fails because GID 5 is not mapped on the guest side.
  6. MATLAB pukes.

The workaround is to map your EGID of 1001 to 5 inside the container (instead of the default 1001:1001), i.e. --gid=5. Then, step 4 succeeds because the call is mapped to chown("/dev/pts/0", 1000, 1001) and MATLAB is happy.

6.3.4. ch-docker2tar gives incorrect image sizes

ch-docker2tar often finishes before the progress bar is complete. For example:

$ ch-docker2tar mpihello /var/tmp
 373MiB 0:00:21 [============================>                 ] 65%
146M /var/tmp/mpihello.tar.gz

In this case, the .tar.gz contains 392 MB uncompressed:

$ zcat /var/tmp/mpihello.tar.gz | wc
2740966 14631550 392145408

But Docker thinks the image is 597 MB:

$ sudo docker image inspect mpihello | fgrep -i size
        "Size": 596952928,
        "VirtualSize": 596952928,

We’ve also seen cases where the Docker-reported size is an underestimate:

$ ch-docker2tar spack /var/tmp
 423MiB 0:00:22 [============================================>] 102%
162M /var/tmp/spack.tar.gz
$ zcat /var/tmp/spack.tar.gz | wc
4181186 20317858 444212736
$ sudo docker image inspect spack | fgrep -i size
        "Size": 433812403,
        "VirtualSize": 433812403,

We think that this is because Docker is computing size based on the size of the layers rather than the unpacked image. We do not currently have a fix; see issue #165.

6.4. How do I …

6.4.1. My app needs to write to /var/log, /run, etc.

Because the image is mounted read-only by default, log files, caches, and other stuff cannot be written anywhere in the image. You have three options:

  1. Configure the application to use a different directory. /tmp is often a good choice, because it’s shared with the host and fast.
  2. Use RUN commands in your Dockerfile to create symlinks that point somewhere writeable, e.g. /tmp, or /mnt/0 with ch-run --bind.
  3. Run the image read-write with ch-run -w. Be careful that multiple containers do not try to write to the same files.

6.4.2. Which specific sudo commands are needed?

For running images, sudo is not needed at all.

For building images, it depends on what you would like to support. For example, do you want to let users build images with Docker? Do you want to let them run the build tests?

We do not maintain specific lists, but you can search the source code and documentation for uses of sudo and $DOCKER and evaluate them on a case-by-case basis. (The latter includes sudo if needed to invoke docker in your environment.) For example:

$ find . \(   -type f -executable \
           -o -name Makefile \
           -o -name '*.bats' \
           -o -name '*.rst' \
           -o -name '*.sh' \) \
         -exec egrep -H '(sudo|\$DOCKER)' {} \;

6.4.3. OpenMPI Charliecloud jobs don’t work

MPI can be finicky. This section documents some of the problems we’ve seen. mpirun can’t launch jobs

For example, you might see:

$ mpirun -np 1 ch-run /var/tmp/mpihello -- /hello/hello
App launch reported: 2 (out of 2) daemons - 0 (out of 1) procs
[cn001:27101] PMIX ERROR: BAD-PARAM in file src/dstore/pmix_esh.c at line 996

We’re not yet sure why this happens — it may be a mismatch between the OpenMPI builds inside and outside the container — but in our experience launching with srun often works when mpirun doesn’t, so try that. Communication between ranks on the same node fails

OpenMPI has many ways to transfer messages between ranks. If the ranks are on the same node, it is faster to do these transfers using shared memory rather than involving the network stack. There are two ways to use shared memory.

The first and older method is to use POSIX or SysV shared memory segments. This approach uses two copies: one from Rank A to shared memory, and a second from shared memory to Rank B. For example, the sm byte transport layer (BTL) does this.

The second and newer method is to use the process_vm_readv(2) and/or process_vm_writev(2)) system calls to transfer messages directly from Rank A’s virtual memory to Rank B’s. This approach is known as cross-memory attach (CMA). It gives significant performance improvements in benchmarks, though of course the real-world impact depends on the application. For example, the vader BTL (enabled by default in OpenMPI 2.0) and psm2 matching transport layer (MTL) do this.

The problem in Charliecloud is that the second approach does not work by default.

We can demonstrate the problem with LAMMPS molecular dynamics application:

$ srun --cpus-per-task 1 ch-run /var/tmp/lammps_mpi -- \
  lmp_mpi -log none -in /lammps/examples/melt/in.melt
[cn002:21512] Read -1, expected 6144, errno = 1
[cn001:23947] Read -1, expected 6144, errno = 1
[cn002:21517] Read -1, expected 9792, errno = 1
[... repeat thousands of times ...]

With strace(1), one can isolate the problem to the system call noted above:

process_vm_readv(...) = -1 EPERM (Operation not permitted)
write(33, "[cn001:27673] Read -1, expected 6"..., 48) = 48

The man page reveals that these system calls require that the process have permission to ptrace(2) one another, but sibling user namespaces do not. (You can ptrace(2) into a child namespace, which is why gdb doesn’t require anything special in Charliecloud.)

This problem is not specific to containers; for example, many settings of kernels with YAMA enabled will similarly disallow this access.

So what can you do? There are a few options:

  • We recommend simply using the --join family of arguments to ch-run. This puts a group of ch-run peers in the same namespaces; then, the system calls work. See the ch-pull2dir man page for details.

  • You can also sometimes turn off single-copy. For example, for vader, set the MCA variable btl_vader_single_copy_mechanism to none, e.g. with an environment variable:

    $ export OMPI_MCA_btl_vader_single_copy_mechanism=none

    psm2 does not let you turn off CMA, but it does fall back to two-copy if CMA doesn’t work. However, this fallback crashed when we tried it.

  • The kernel module XPMEM enables a different single-copy approach. We have not yet tried this, and the module needs to be evaluated for user namespace safety, but it’s quite a bit faster than CMA on benchmarks. I get a bunch of independent rank-0 processes when launching with srun

For example, you might be seeing this:

$ srun ch-run /var/tmp/mpihello -- /hello/hello
0: init ok cn036.localdomain, 1 ranks, userns 4026554634
0: send/receive ok
0: finalize ok
0: init ok cn035.localdomain, 1 ranks, userns 4026554634
0: send/receive ok
0: finalize ok

We were expecting a two-rank MPI job, but instead we got two independent one-rank jobs that did not coordinate.

MPI ranks start as normal, independent processes that must find one another somehow in order to sync up and begin the coupled parallel program; this happens in MPI_Init().

There are lots of ways to do this coordination. Because we are launching with the host’s Slurm, we need it to provide something for the containerized processes for such coordination. OpenMPI must be compiled to use what that Slurm has to offer, and Slurm must be told to offer it. What works for us is a something called “PMI2”. You can see if your Slurm supports it with:

$ srun --mpi=list
srun: MPI types are...
srun: mpi/pmi2
srun: mpi/openmpi
srun: mpi/mpich1_shmem
srun: mpi/mpich1_p4
srun: mpi/lam
srun: mpi/none
srun: mpi/mvapich
srun: mpi/mpichmx
srun: mpi/mpichgm

If pmi2 is not in the list, you must ask your admins to enable Slurm’s PMI2 support. If it is in the list, but you’re seeing this problem, that means it is not the default, and you need to tell Slurm you want it. Try:

$ export SLURM_MPI_TYPE=pmi2
$ srun ch-run /var/tmp/mpihello -- /hello/hello
0: init ok wc035.localdomain, 2 ranks, userns 4026554634
1: init ok wc036.localdomain, 2 ranks, userns 4026554634
0: send/receive ok
0: finalize ok

6.4.4. How do I run X11 apps?

X11 applications should “just work”. For example, try this Dockerfile:

FROM debian:stretch
RUN    apt-get update \
    && apt-get install -y xterm

Build it and unpack it to /var/tmp. Then:

$ ch-run /scratch/ch/xterm -- xterm

should pop an xterm.

If your X11 application doesn’t work, please file an issue so we can figure out why.

6.4.5. How do I create a tarball compatible with Charliecloud?

In contrast with best practices for source code, Charliecloud expects an image tarball to have either no top-level directory or a top-level directory that is exactly . (dot). This is inherited from the format of docker export tarballs. If you’re creating tarballs by other means, you may run into this issue.

For example, let’s try to re-pack the chtest image directory. This fails with a rather opaque error message.

$ tar czf chtest2.tar.gz chtest
$ tar tf chtest2.tar.gz | head
$ ch-tar2dir chtest2.tar.gz .
$ ls chtest2
chtest  dev  mnt  WEIRD_AL_YANKOVIC
$ ch-run ./chtest2 -- echo hello
ch-run[28780]: can't bind /etc/passwd to /var/tmp/images/chtest2/etc/passwd: No such file or directory (charliecloud.c:132 2)

The workaround is to create the tarball from within the image directory. (If you do this immediately after the above, you’ll need to remove the chtest2 directory first.)

$ ch $CH_TEST_IMGDIR/chtest
$ tar czf ../chtest2.tar.gz .
$ cd ..
$ tar tf chtest2.tar.gz | head
$ ch-tar2dir chtest2.tar.gz .
$ ls chtest2
bin  etc   lib    mnt   root  sbin  sys   tmp  var
dev  home  media  proc  run   srv   test  usr  WEIRD_AL_YANKOVIC
$ ch-run ./chtest2 -- echo hello

We are working on usability enhancements for this process.