
A Memory Consumption Benchmark for MPI Implementations

Samuel K. Gutiérrez
Computer, Computational, and Statistical Sciences Division

Los Alamos National Laboratory
samuel@lanl.gov

November 14, 2018

Abstract

This report describes the design, implementation, and usage of mpimemu, a memory consumption
benchmark for implementations of the Message Passing Interface (MPI).

1 Introduction

Message passing libraries such as Open MPI [1] and MPICH [2] are examples of message-passing mid-
dleware. Like the application drivers they support, these libraries consume memory to maintain their
internal state, which is primarily influenced by their software architecture (i.e., how they are imple-
mented), runtime configuration (e.g., the underlying communication protocols used), and how they are
driven with respect to job size (e.g., the size of MPI_COMM_WORLD) and communication workload (e.g.,
the communication pattern formed by the application driver).

Determining the amount of memory consumed by an MPI library (or implementation) is challenging
and becoming increasingly important in the development, upkeep, and deployment of parallel programs
in the high-performance computing (HPC) domain. Popular approaches for MPI library memory at-
tribution can generally be categorized as library-specific instrumentation or benchmark-driven library
analysis. An example of the former can be found in Cray’s implementation of MPICH, where through
environmental controls internal memory monitoring statistics are accessible via textual output (either to
a terminal or a file). An example of the latter is mpimemu, the benchmark program described here.

2 History and Background

In 2011, mpimemu was written at Los Alamos National Laboratory (LANL) to help assess MPI library
memory consumption as a function of job size, communication workload, and hardware/software ar-
chitecture. mpimemu has since been included as a part of a broader suite of applications—acceptance
tests—used to evaluate large HPC system installations.

2.1 Collecting Process/System Information

The proc pseudo file system (procfs) offers a convenient interface for obtaining information about and
influencing the state of a running operating system (OS) kernel [3]. procfs provides user-space access to
kernel-maintained state by exposing a file-based access semantics to the structure hierarchy it maintains
(directories and files). Obtaining information about current OS state, including that of active processes,
is accomplished by opening and parsing files located below procfs’s mount point (typically /proc). In

1

mailto:samuel@lanl.gov

many cases, the content of these special files is generated dynamically to provide an updated view of the
operating system’s state.

Memory map monitoring collects information by interrogating specific procfs entries. This approach
is appealing for a variety of reasons. First, it is relatively straightforward to implement. Second, when
compared to heap profiling alone, it can provide a more holistic view into important features that ulti-
mately impact a process’s actual memory footprint, for example, the size and count of private/shared
pages and their occupancy in RAM. Finally, it is language-agnostic and therefore readily applicable to any
running process.

2.2 The Benchmark Program

mpimemu is an MPI program written in C with built-in memory map monitoring that works by sampling
/proc/self/status (process level) and /proc/meminfo (node level), while optionally imposing a
scalable communication workload on the system. The communication workload logically consists of the
following parts:

1. Small Data Allreduce Max: A collective call wherein processes in MPI_COMM_WORLD exchange
double-precision floating-point values via MPI_Allreduce(MPI_MAX). The rationale behind
including this particular operation in our synthetic communication workload is to emulate a
common operation found in many HPC applications.

2. Point-to-Point Exchange: A series of point-to-point data exchanges between intra- and inter-node
processes using MPI_Sendrecv(). Successive calls to this routine yield different data transmission
totals, where sender-side totals cycle through sizes ranging from 1 B to 16 KiB. The rationale here is
to exercise different communication protocols typically used in MPI implementations (e.g., eager
and rendezvous protocols).

When enabled, communication and data collection are interleaved. That is, before each sample is
collected the previously described data exchange operations are performed. Figure 1 shows the
point-to-point communication patterns formed by mpimemu when given different runtime config-
urations. In this case, different numbers of processes per node (PPN) at 128 processes. For more details
about mpimemu’s communication workload, please consult mmu_mpi_work() in mmu_mpi.c. Runtime
memory attribution in mpimemu is approximated by calculating usage deltas between samples collected
during its execution and those collected before the initialization of the MPI library.

3 Obtaining the Benchmark Program

Source code distributions of mpimemu can be found at http://hpc.github.com/mpimemu. Pre-release
source code can be found at https://github.com/hpc/mpimemu.

4 Building the Benchmark Program

First, make sure that mpicc or some other wrapper compiler with similar capabilities is in the $PATH
(mpicc and cc are checked by default). To initiate a standard configure, invoke the following command:

./configure

To configure mpimemu with a different wrapper compiler, explicitly specify the wrapper. For example,

./configure CC=[NEWCC]

2

0 50 100
Global Process Identifier (Receiver)

0

20

40

60

80

100

120

G
lo

ba
l P

ro
ce

ss
 Id

en
tif

ier
 (S

en
de

r)

0.0

0.2

0.4
0.6
0.8

Po
in

t-t
o-

Po
in

t D
at

a
Tr

an
sm

iss
io

n
(M

B)

(a) 4 nodes at 32 PPN

0 50 100
Global Process Identifier (Receiver)

0

20

40

60

80

100

120

G
lo

ba
l P

ro
ce

ss
 Id

en
tif

ier
 (S

en
de

r)

0.0

0.1

0.2
0.3
0.4

Po
in

t-t
o-

Po
in

t D
at

a
Tr

an
sm

iss
io

n
(M

B)

(b) 8 nodes at 16 PPN

0 50 100
Global Process Identifier (Receiver)

0

20

40

60

80

100

120

G
lo

ba
l P

ro
ce

ss
 Id

en
tif

ier
 (S

en
de

r)

0.0

0.1

0.2
0.3
0.4

Po
in

t-t
o-

Po
in

t D
at

a
Tr

an
sm

iss
io

n
(M

B)

(c) 16 nodes at 8 PPN

0 50 100
Global Process Identifier (Receiver)

0

20

40

60

80

100

120

G
lo

ba
l P

ro
ce

ss
 Id

en
tif

ier
 (S

en
de

r)

0.0

0.1

0.2
0.3
0.4

Po
in

t-t
o-

Po
in

t D
at

a
Tr

an
sm

iss
io

n
(M

B)

(d) 32 nodes at 4 PPN

Figure 1: Visualization of the point-to-point communication structure formed by mpimemu when given
different runtime configurations at 128 processes.

Once mpimemu’s configuration process has completed successfully, build the source by invoking make.
For example, one can configure, build, and install mpimemu with the following commands:

./configure --prefix=$HOME/local/mpimemu && make && make install

4.1 Installation Notes

The use of mpimemu does not require its installation (via make install). Rather, once built, mpimemu
is usable from within its source directory.

5 Using the Benchmark Program

The preferred way to conduct a memory usage scaling study with mpimemu is to use a helper utility called
mpimemu-run. mpimemu-run is used to run a succession of mpimemu instances at varying sizes. The
following environment variables change the way mpimemu-run behaves.

3

5.1 Required Environment Variables

• MPIMEMU_MAX_PES: Specifies the maximum number of MPI processes to execute (i.e., job size) for
a given experiment.

• MPIMEMU_RUN_CMD: Specifies the run template used to launch mpimemu jobs.

– Example template specifications using mpirun:
mpirun -n nnn aaa

mpirun -n nnn -npernode NNN aaa

– Example template specifications using aprun:
aprun -n nnn aaa

aprun -n nnn -N NNN aaa

– Required template variables:
nnn: Replaced with the total number processes to be launched. This value changes after each
run and is determined by MPIMEMU_NUMPE_FUN(X). More on MPIMEMU_NUMPE_FUN below.
aaa: Replaced with the mpimemu invocation string.

– Optional template variables:
NNN: Replaced with MPIMEMU_PPN. If MPIMEMU_PPN is not specified, a value of 1 will be used.

• MPIMEMU_NUMPE_FUN: Specifies the function that determines how nnn grows with respect to X.
"X" must be provided in the string defining the function.

– Example (bash-like):
export MPIMEMU_START_INDEX=1

export MPIMEMU_NUMPE_FUN="X + 1"

export MPIMEMU_MAX_PES=4

Will run jobs of size 1, 2, 3, and 4.

– Useful, accepted arithmetic operators:
+ Addition

* Multiplication

** Exponentiation

5.2 Optional Environment Variables

• MPIMEMU_START_INDEX: Specifies the starting integer value of an increasing value, X. When
set, X starts at the given value and is then incremented by 1 while MPIMEMU_NUMPE_FUN(X)

≤ MPIMEMU_MAX_PES. Note that a job size of MPIMEMU_MAX_PES will be included irrespective
of the values yielded by MPIMEMU_NUMPE_FUN(X).

• MPIMEMU_PPN: Specifies the number of MPI processes per node.

• MPIMEMU_DATA_DIR_PREFIX: Specifies the base directory where mpimemu data are stored.

• MPIMEMU_BIN_PATH: Specifies the directory where mpimemu is located.

• MPIMEMU_SAMPS_PER_S: Integer value specifying the number of samples to collect every second.
The default is 10 samples per second.

4

• MPIMEMU_SAMP_DURATION: Integer value specifying the sampling duration in seconds. The default
is 10 seconds.

• MPIMEMU_DISABLE_WORKLOAD: If set, disables previously described synthetic MPI communication
workload. See Section 2.2 for more details.

5.3 Running the Benchmark Program

Once the runtime environment is setup properly, add mpimemu’s installation prefix to the $PATH or run
from within its source distribution. For example (if in $PATH),

mpimemu-run

or from within mpimemu’s source distribution

./src/mpimemu-run

When complete, a path to the generated data will be echoed to the terminal. For example,

data written to: /users/samuel/mpimemu-samuel-01032013

5.4 Generating CSV Files From Output Data

mpimemu-mkstats consolidates data generated by mpimemu-run. To generate comma-separated values
(CSV) files, run the following command:

mpimemu-mkstats -i /path/to/data

For more options and information about mpimemu-mkstats, run mpimemu-mkstats -h.

5.5 Plotting CSV Data

mpimemu-plot can be used to generate node and process memory usage graphs from output generated
by mpimemu-mkstats. gnuplot and ps2pdf are external programs that must be included in the $PATH,
as they are used internally by mpimemu-plot.

5.6 Interpreting the Benchmark Data

To interpret the benchmark data, consider idle system memory usage (e.g., system image size). mpimemu
provides a general sense of memory usage scaling characteristics, but it is important to note that not all
memory consumed on a compute resource is attributable to the MPI library. Generally, it is a good idea
to start scaling studies at 1 MPI process to get a general sense of close-to-base memory usage (i.e., base
system usage). mpimemu-plot presents MPI memory usage as MemUsed − PreInitMemUsed. Please
contact me if a better default memory usage metric exists.

5.7 Usage Notes

Please note that mpimemu requires all nodes to have the same number of processes. This implies that the
process-per-node invariant must be maintained for all values of MPIMEMU_NUMPE_FUN(X). Otherwise,

5

mpimemu will detect a violation of this requirement and will subsequently terminate the current job,
resulting in an incomplete data set.

6 Acknowledgement

Work supported by the Advanced Simulation and Computing program of the U.S. Department of Energy’s
NNSA. Los Alamos National Laboratory is managed and operated by Los Alamos National Security, LLC
(LANS), under contract number DE-AC52–06NA25396 for the Department of Energy’s National Nuclear
Security Administration (NNSA).

References

[1] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David
J. Daniel, Richard L. Graham, and Timothy S. Woodall. “Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation”. In. 11th European PVM/MPI Users’ Group Meeting.
Budapest, Hungary, September 2004.

[2] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. “A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard”. In Parallel Computing 22(6) 1996,
pages 789–828.

[3] proc (5) Linux User’s Manual. December 2015.

6

	Introduction
	History and Background
	Collecting Process/System Information
	The Benchmark Program

	Obtaining the Benchmark Program
	Building the Benchmark Program
	Installation Notes

	Using the Benchmark Program
	Required Environment Variables
	Optional Environment Variables
	Running the Benchmark Program
	Generating CSV Files From Output Data
	Plotting CSV Data
	Interpreting the Benchmark Data
	Usage Notes

	Acknowledgement
	References

